

Direzione Pianificazione delle Risorse Idriche

ASSESSMENT OF GROUNDWATER RESOURCES USING LARGE-SCALE INTEGRATED SIMULATION MODELS

(REGIONE PIEMONTE, NORTHERN ITALY)

N.Quaranta, A.Crosta - Hydrodata S.p.a. – Intecno DHI, *Turin* (IT) M.Governa - Piedmont Region, Direction of Water Resources, *Turin* (IT) G.P.Beretta - University of *Milan* (IT), Department of Earth Sciences

INTRODUCTION

Groundwater system of Regione Piemonte (RP)

- ✓ the upper portion of the largest Quaternary basin in Italy: River Po floodplain
- first regional evaluation in Piedmont, could be integrated with similar studies in Lombardia-Emilia Romagna, to complete the overall groundwater balance of River Po floodplain

100 Kilometers

GROUNDWATER SYSTEM OF REGIONE PIEMONTE

Quaternary and late Pliocene deposits $\approx 9200 \text{ km}^2$ (36% of RP extension)

Shallow (1st) regional aquifer:

✓ recharged by rain+irrigation

- ✓ high exchange rate with rivers
- ✓ groundwater depth depending by topographic surface (old quaternary terraces, morain anphiteatre outside alpine valley)
- ✓ well-known bottom surface (depth <100 m)

✓ drainage from springs lines, artificially connected to irrigation channels

<u>Confined/leaky multi-layer aquifer complex</u>:

✓ extension controlled by major tectonic structures (sedimentary basins/buried anticline)

 \checkmark most important groundwater storage (explored thickness ≈ 200 m)

✓ bottom surface known by hydrocarbons research (drilling, seismic profiles) and water wells

✓ artesian flow (Pliocene sandy deposits)

HYDROGEOLOGICAL SCHEME

Ref.Code	Hydrogeological unit	Simulation model
DF	fluvial deposits (Quat.)	1 st computational layer (unconfined conditions)
DG	glacial deposits (Quat.)	lense 1
DVA	fine deposits - "Villafranchiano" (Pleistocene)	lense 2
DVF	coarse/fine interbedded deposits - "Villafranchiano" (Pleistocene - Pliocene)	2 nd computational layer (confined conditions)
DM	Pliocenic deposits – "Asti sands"	
DM	Pliocenic deposits – "Lugagnano clays"	
DP	Pre-Pliocenic deposits	regional impermeable layer
DM	Igneous, metamorphic rocks	
DC	Carbonatic rocks (Mesozoic)	lateral recharge to 1 st -2 nd computational layer

Integrated simulation models for different components of water flow

Flow components	Model specifications	Topics	Coupling conditions
Unsaturated zone	✓DHI DaisyGIS (*) ✓DHI Mike SHE WM – UZ (*)	 ✓1D distributed percolation wodel ✓1D distributed percolation model in rice areas (flooding irrigation) 	✓off-line (upper boundary conditions for Groundwater model) ✓off-line (id.)
River network	DHI Mike11 HD (*)	1D Hydrodinamic, physically based on river network cross sections and hydro- engineering structures	dynamic coupling with groundwater flow model and with Flood Forecasting System of Regione Piemonte (RR Rainfall-Runoff)
Groundwater	DHI Mike She WM – SZ (*)	3Dflowinheterogeneousaquifers,finitedifferencemethod	dynamic coupling with channel flow model

(*) DHI Water & Environment - DK

i. Unsaturated zone (a)

✓ 1D deterministic, physically based, simulation of water and nutrients flows in unsaturated zone using Richard's equations; extended to non-point application with DaisyGIS

i. Unsaturated zone (b)

ii. Interaction with river network (*a*)

✓ <u>River cross-sections</u> inserted from topographic surveys; semi-automatic control between DTM and river crosssections elevation

- ✓ Upper boundary condition: time-series of discharge generated from RR (rainfall-runoff) model in mountain/hill catchments (or measured in hydrometric station) ⇔ coupling with RP Flood Forecasting System
- ✓ Internal boundary condition: time series of water diversion from rivers (for irrigation/hydropower): simulation of "real" discharges available after use

ii. Interaction with river network (b)

 ✓ 1D deterministic, physically based, hydrodinamic simulation of river flows and water levels using the fully dynamic Saint Venant equations (MIKE11)

 river-aquifer exchange = the river is considered a line source/sink located on the "river links" (edge between two adjacent model grid cells)

✓ Computation time-step: 10'

✓ Calibration of "river leakage coefficient"- C
C₁ =
$$f(K_{aquifer})$$
 – full conctact river/aquifer
C₂ = $f(K_{aquifer}, K_{river bed})$ – river lining
C₃ = $f(K_{river bed})$ – river bed with very low K

iii. Saturated zone (a)

✓ 3D deterministic, physically based, simulation model of groundwater flow with non-linear Boussinesq equation, solved numerically by an iterative implicit finite difference technique

Model grid:

cells 1km²: 160 rows, 180 columns, 2 layers 9448 computation cells + 846 boundary cells

Initial conditions:

Piezometric head in 1st layer identified from

- 82 registration piezometers
- •430 measurement point in selected wells
- 1800 river bottom points

Piezometric head in 2nd layer identified from existing piezometric maps in AT district

iii. Saturated zone (b)

= 1.3474>

 $R^2 = 0.793$

r = 0.7453x

 $B^2 = 0.809$

1.0E-01

1.0E-01

iii. Saturated zone (c)

Procedures of calibration – observed/computed piezom.heads

Comparison between computed/observed heads - maps:

✓ Best fit in low-hydraulic gradient areas (sim.- obs. << DTM_{max-min})

 \checkmark Increasing discrepancy along relief boundary or hill morain areas (uncertainity linked to low-density of measured wells => optimization of monitoring network)

Procedures of calibration – time series in piezometric stations

heads - time series:

Comparison between computed/observed

ANALYSIS OF RESULTS AND USE OF THE MODEL (a)

Evaluation of aquifer dynamic features with respect to different aggregation levels:

✓ Hydrographic unit (surface water)

✓ Aquifer complex/districts

Hydrographic unit	Recharge (10 ⁶ m ³ /y)	Abstractions volume (10 ⁶ m ³ /y)	Aquifer volume (10 ⁶ m³/y)	Infiltration rate (10 ⁶ m ³ /y)	Abstraction density (10 ⁶ m ³ /km ² /y)	Abstraction/Recharge ratio	Recharge/Aquifer Volume ratio	De desses (A.s.
DORA BALTEA	245.18	16.48	873	0.61	0.041	7%	28%	Recharge/Aq.
CERVO	478.45	15.69	2127	0.78	0.026	3%	22%	3-10 %
AGOGNA	491.39	38.52	2524	0.97	0.076	8%	19%	>15.95
SESIA	997.45	42.79	5151	1.07	0.046	4%	19%	C
TERDOPPIO	187.26	15.88	1041	0.90	0.076	8%	18%	
TICINO	217.93	18.56	1216	0.89	0.076	9%	18%	
ORCO	99.84	11.8	737	0.49	0.058	12%	14%	
BANNA	105.95	41.84	792	0.23	0.092	39%	13%	
BELBO	12.19	3.48	94	0.28	0.080	29%	13%	
ALTO TANARO	118.62	15.91	919	0.37	0.050	13%	13%	la la
GESSO	7.73	1.04	60	0.37	0.050	13%	13%	4
BORMIDA	36.28	10.39	294	0.28	0.080	29%	12%	4
MALONE	115.22	43.81	993	0.45	0.173	38%	12%	34
BORBORE	53.58	24.9	473	0.20	0.092	46%	11%	- Alter
STURA DI LANZO	76.52	45.06	744	0.42	0.244	59%	10%	Pro an
PO	647.39	155.01	6588	0.48	0.115	24%	10%	5 1133
DORA RIPARIA	51.19	33.21	548	0.38	0.244	65%	9%	人 一百分
ORBA	20.16	5.87	217	0.28	0.081	29%	9%	NY D
SANGONE	48.79	33.46	552	0.36	0.244	69%	9%	1 STILL
TANARO	166.49	56.1	2098	0.24	0.082	34%	8%	-
CHISOLA	181.84	104.01	2489	0.44	0.254	57%	7%	S ST.
CHISONE	11.69	6.26	165	0.48	0.258	54%	7%	to the in
PELLICE	39.23	21	555	0.48	0.258	54%	7%	Carat
STURA DI DEMONTE	117.16	32.24	1682	0.36	0.099	28%	7%	E
ALTO PO	164.24	78.94	2678	0.45	0.218	48%	6%	
CURONE	10.76	3.11	185	0.29	0.083	29%	6%	EL.
SCRIVIA	52.89	15.72	937	0.28	0.083	30%	6%	
VARAITA	63.99	25.27	1261	0.41	0.163	39%	5%	
MAIRA	74.05	31.66	1579	0.38	0.163	43%	5%	0
GRANA-MELLEA	99.85	48.15	2402	0.34	0.163	48%	4%	

ANALYSIS OF RESULTS AND USE OF THE MODEL (b)

Systematic and dynamic approach to groundwater-balance evaluation

✓ Global scale (RP)

✓ Local (sub-regional) scale

1st AQUIFER		2	
INFLOW	10 ⁶ m ³ /y	m ³ /s	%
Net recharge	5046	160	57%
Boundary inflow (horiz.)	946	30	11%
Flux from 2° to 1° layer (vert.)	2681	85	30%
River seepage	189	6	2%
Totale	8862	281	100%
OUTLOW			
Boundary outflow (horiz.)	284	9	3%
Flux from 1° to 2° layer (vert.)	2586	82	29%
Well abstraction	2681	85	30%
Baseflow to river	3185	101	36%
Drainage towards channels/springs	158	5	2%
Totale	8893	282	100%
Delta storage	-32	-1	0%
	-	3	
2 nd AQUIFER			
2 nd AQUIFER INFLOW	10 ⁶ m ³ /y	m ³ /s	%
2 nd AQUIFER INFLOW River seepage	10 ⁶ m ³ /y 32	m ³ /s	%
2 nd AQUIFER INFLOW River seepage Net recharge	10 ⁶ m ³ /y 32 0	m ³ /s 1 0	% 1% 0%
2 nd AQUIFER INFLOW River seepage Net recharge Boundary inflow (horiz.)	10 ⁶ m ³ /y 32 0 568	m ³ /s 1 0 18	% 1% 0% 15%
2 nd AQUIFER INFLOW River seepage Net recharge Boundary inflow (horiz.) Flux from 1° to 2° layer (vert.)	10 ⁶ m ³ /y 32 0 568 3185	m ³ /s 1 0 18 101	% 1% 0% 15% 85%
2 nd AQUIFER INFLOW River seepage Net recharge Boundary inflow (horiz.) Flux from 1° to 2° layer (vert.) Totale	10 ⁶ m ³ /y 32 0 568 3185 3753	m ³ /s 1 0 18 101 119	% 1% 0% 15% 85% 100%
2 nd AQUIFER INFLOW River seepage Net recharge Boundary inflow (horiz.) Flux from 1° to 2° layer (vert.) Totale OUTLOW	10 ⁶ m ³ /y 32 0 568 3185 3753	m ³ /s 1 0 18 101 119	% 1% 0% 15% 85% 100%
2 nd AQUIFER INFLOW River seepage Net recharge Boundary inflow (horiz.) Flux from 1° to 2° layer (vert.) Totale OUTLOW Boundary outflow (horiz.)	10 ⁶ m ³ /y 32 0 568 3185 3753 3753 378	m ³ /s 1 0 18 101 119 12	% 1% 0% 15% 85% 100% 9%
2 nd AQUIFER INFLOW River seepage Net recharge Boundary inflow (horiz.) Flux from 1° to 2° layer (vert.) Totale OUTLOW Boundary outflow (horiz.) Flux from 2° to 1° layer (vert.)	10 ⁶ m ³ /y 32 0 568 3185 3753 7753 378 2681	m ³ /s 1 0 18 101 119 12 85	% 1% 0% 15% 85% 100% 9% 66%
2 nd AQUIFER INFLOW River seepage Net recharge Boundary inflow (horiz.) Flux from 1° to 2° layer (vert.) Totale OUTLOW Boundary outflow (horiz.) Flux from 2° to 1° layer (vert.) Well abstraction	10 ⁶ m ³ /y 32 0 568 3185 3753 7753 3778 378 2681 442	m ³ /s 1 0 18 101 119 12 85 14	% 1% 0% 15% 85% 100% 9% 66% 11%
2 nd AQUIFER INFLOW River seepage Net recharge Boundary inflow (horiz.) Flux from 1° to 2° layer (vert.) Totale OUTLOW Boundary outflow (horiz.) Flux from 2° to 1° layer (vert.) Well abstraction Baseflow to river	10 ⁶ m ³ /y 32 0 568 3185 3753 775 3753 2681 442 347	m ³ /s 1 0 18 101 119 12 85 14 11	% 1% 0% 15% 85% 100% 9% 66% 11% 9%
2 nd AQUIFER INFLOW River seepage Net recharge Boundary inflow (horiz.) Flux from 1° to 2° layer (vert.) Totale OUTLOW Boundary outflow (horiz.) Flux from 2° to 1° layer (vert.) Well abstraction Baseflow to river Drainage towards channels/springs	10 ⁶ m ³ /y 32 0 568 3185 3753 7753 3753 2681 442 347 189	m ³ /s 1 0 18 101 119 12 85 14 11 6	% 1% 0% 15% 85% 100% 9% 66% 11% 9% 5%
2 nd AQUIFER INFLOW River seepage Net recharge Boundary inflow (horiz.) Flux from 1° to 2° layer (vert.) Totale OUTLOW Boundary outflow (horiz.) Flux from 2° to 1° layer (vert.) Well abstraction Baseflow to river Drainage towards channels/springs Totale	10 ⁶ m ³ /y 32 0 568 3185 3753 3753 3753 2681 442 347 189 4037	m ³ /s 1 0 18 101 119 12 85 14 11 6 128	% 1% 0% 15% 85% 100% 66% 11% 9% 5% 100%

ANALYSIS OF RESULTS AND USE OF THE MODEL (c)

Evaluation of "quantitative status" according to national law (D.Lgs.152/99):

 Classification of aquifer complex with respect to productivity parameters, recharge rate and pumping impact

Low-moderate human impact, groundwater use is sustainable on a middle-long time period ("A" class)

Moderate impact of groundwater abstraction on aquifer balance ("B" class)

Significant changes on groundwater abstraction balance, as a consequence of very high abstraction rate ("C" class)

Low-moderate human impact, into aquifer complex with low productivity features ("D" class)

ANALYSIS OF RESULTS AND USE OF THE MODEL (d)

Decisions supporting of Minimum River Discharge:

✓ Identification of rivers branches on the amount of baseflow from the aquifer (or seepage loss)

Delineation of protection measures and identification of "potential water supply zone":

✓ Identification of "recharge areas" of deep aquifers

 ✓ Preliminary evaluation of groundwater potential abstraction rate and impacts → "sustainable use"

✓ Location of new wellfield

	Optimization of monitoring piezometric network
✓	In terms of position/density of the monitoring wells
✓	In terms of transmission of the data